GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthase activity, protein levels and dimerisation.

نویسندگان

  • Shijie Cai
  • Nicholas J Alp
  • Denise McDonald
  • Ian Smith
  • Jonathan Kay
  • Laura Canevari
  • Simon Heales
  • Keith M Channon
چکیده

OBJECTIVES Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) activity. BH4 levels are regulated by de novo biosynthesis; the rate-limiting enzyme is GTP cyclohydrolase I (GTPCH). BH4 activates and promotes homodimerisation of purified eNOS protein, but the intracellular mechanisms underlying BH4-mediated eNOS regulation in endothelial cells remain less clear. We aimed to investigate the role of BH4 levels in intracellular eNOS regulation, by targeting the BH4 synthetic pathway as a novel strategy to modulate intracellular BH4 levels. METHODS We constructed a recombinant adenovirus, AdGCH, encoding human GTPCH. We infected human endothelial cells with AdGCH, investigated the changes in intracellular biopterin levels, and determined the effects on eNOS enzymatic activity, protein levels and dimerisation. RESULTS GTPCH gene transfer in EAhy926 endothelial cells increased BH4 >10-fold compared with controls (cells alone or control adenovirus infection), and greatly enhanced NO production in a dose-dependent, eNOS-specific manner. We found that eNOS was principally monomeric in control cells, whereas GTPCH gene transfer resulted in a striking increase in eNOS homodimerisation. Furthermore, the total amounts of both native eNOS protein and a recombinant eNOS-GFP fusion protein were significantly increased following GTPCH gene transfer. CONCLUSIONS These findings suggest that GTPCH gene transfer is a valid approach to increase BH4 levels in human endothelial cells, and provide new evidence for the relative importance of different mechanisms underlying BH4-mediated eNOS regulation in intact human endothelial cells. Additionally, these observations suggest that GTPCH may be a rational target to augment endothelial BH4 and normalise eNOS activity in endothelial dysfunction states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytokines stimulate GTP cyclohydrolase I gene expression in cultured human umbilical vein endothelial cells.

In vascular endothelial cells, tetrahydrobiopterin serves as an essential cofactor required for enzymatic activity of nitric oxide synthase. GTP cyclohydrolase I is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. Previous studies have demonstrated that proinflammatory cytokines stimulate production of tetrahydrobiopterin in endothelial cells. Long-term regulation of GTP cyc...

متن کامل

Ascorbate enhances iNOS activity by increasing tetrahydrobiopterin in RAW 264.7 cells.

Studies on the effect of ascorbic acid on inducible nitric oxide synthase (iNOS) activity are few and diverse, likely to be dependent on the species of cells. We investigated a role of ascorbic acid in iNOS induction and nitric oxide (NO) generation in mouse macrophage cell line RAW 264.7. Although interferon- (IFN-) gamma alone produced NO end products, ascorbic acid enhanced NO production onl...

متن کامل

Regulation of Nitric Oxide Synthesis by Proinflammatory Cytokines

We have examined cytokine regulation of nitric oxide synthase (NOS) in human umbilical vein endothelial cells (HUVEC). 24-h treatment with IFN-'y (200 U/ml) plus TNF (200 U/ml) or IL-1,8 (5 U /ml) increased NOS activity in HUVEC lysates, measured as conversion of I '4CIL-arginine to [ '4Cj L-citrulline. Essentially, all NOS activity in these cells was calcium dependent and membrane associated. ...

متن کامل

HMG-CoA reductase inhibitor increases GTP cyclohydrolase I mRNA and tetrahydrobiopterin in vascular endothelial cells.

OBJECTIVE Endothelial nitric oxide synthase (eNOS) activity is supported by tetrahydrobiopterin (BH4), which appears to be important for generating protective NO but decreases uncoupling formation of superoxide. We investigated the effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, in terms of BH4 metabolism in human umbilical vein endothelial cells (HUVECs). M...

متن کامل

Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells.

OBJECTIVE Endothelial dysfunction in diabetes is characterized by decreased nitric oxide (NO) bioactivity and increased superoxide (SO) production. Reduced levels of tetrahydrobiopterin (BH4), an essential cofactor of endothelial NO synthase (eNOS), appear to be associated with eNOS enzymatic uncoupling. We sought to investigate whether augmented BH4 biosynthesis in hyperglycemic human aortic e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 55 4  شماره 

صفحات  -

تاریخ انتشار 2002